

JBD-003-1161001

Seat No.

M. Sc. (Sem. I) (CBCS) Examination

December - 2019

Mathematics: CMT - 1001

(Algebra - I)

Faculty Code: 003

Subject Code: 1161001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Each question carries 14 marks.

1 Answer any **seven** questions:

 $7\times2=14$

- (i) Write down two subgroups of S_3 which are not normal, where $S_3 = \{e, \sigma, \sigma^2, \psi, \sigma\psi, \sigma^2\psi\}$.
- (ii) Define a simple group and give an example of a simple group. Is A_4 a simple group ? (Y/N).
- (iii) Prove or disprove that S_3 is a simple group.
- (iv) Define an ideal I of a ring R. Let $a, b, c \in I$. Deduce that $a-b-2c \in I$.
- (v) Let G be a finite group and a prime p divide to o(G). Define a p-Sylow subgroup of G.
- (vi) Let A, B, C ideals of a ring R. Prove that $A \cap B \cap C$ is also an ideal of R.
- (vii) Let G be a finite group with o(G) = 147. Write down order of 3-Sylow and 7-Sylow subgroups of G.
- (viii) Define a prime ideal of a ring R. Is all prime ideals of $(\mathbb{Z}, +, \cdot)$ are maximal ideals? Justify.
- 2 Answer any two questions:

 $2 \times 7 = 14$

- (a) State and prove Third Fundamental Theorem of Groups.
- (b) Let G be a group and

$$G' = \left\{ \prod_{i=1}^{t} a_i b_i a_i^{-1} b_i^{-1} / a_i, b_i \in G, \forall i = 1, 2, \dots, t \right\} \text{ be the}$$

commutator subgroup G. In standard notation prove that G' is a normal subgroup of G and G/G' is an abelian group.

(c) Let G be a non-abelian group of order 6. Prove that G is isomorphic to S_3 .

3 Answer any **one** question:

- $1 \times 14 = 14$
- (a) (i) State and Prove Sylow's Third Theorem.
 - (ii) Let G be a finite abelian group and a prime p divide to o(G). Let P be a Sylow p-subgroup of G. Prove that P is only Sylow p-subgroup of $G \Leftrightarrow P$ is normal subgroup of G.
- (b) Let R be a ring. Prove that for any positive integer n, any ideal of $M_n(R)$, the ring of all the nxn matrices over R is given by $M_n(I)$, where I ranges through all the ideals of R.
- (c) Prove that $A_n (n \ge 5)$ is a simple group. For $n \ge 5$, prove that the collection of all normal subgroups of S_n is $\{\{e\}, A_n, S_n\}$.
- 4 Answer any two questions:

 $2 \times 7 = 14$

- (a) State and Prove First Isomorphism Theorem of Rings.
- (b) Let A, B be two ideals of a ring R. Define product AB and sum A + B of two ideals in R. Prove that AB, A + B and $AB \cap (A+B)$ all are ideals of R.
- (c) Let $f: R \to T$ be an onto ring homomorphism. Let \mathcal{C} the collection of ideals of R which contains ker f and \mathcal{D} be the collection of all ideals of T. Prove that there is a bijective map from \mathcal{C} into \mathcal{D} .
- 5 Answer any two questions:

 $2 \times 7 = 14$

- (a) Let G be a finite group, with $O(G) = p \cdot q$, where p and q both are primes (p < q). If p+q-1, then prove that G must be a cyclic group.
- (b) Let R be a commutative ring and M be an ideal of R. Prove that M is a maximal ideal of R if and only if R/M is a field.
- (c) Let G be a group and N_i be normal subgroups of G, $\forall i = 1, 2,, n$. Prove that G is the internal direct product of $N_1, N_2,, N_n$ iff $G = N_1 N_2 ... N_n$ and $N_i \cap N_1 ... N_{i-1} N_{i+1} ... N_n = \{e\}$, for every $i \in \{1, 2,, n\}$.
- (d) Prove that:
 - (i) Every irreducible element of a Principle Ideal Domain R is always a prime element of R and
 - (ii) Every Euclidean Domain is also Principle Ideal Domain.